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We study two-dimensional q-state random-bond Potts models for both q=8 and q=5 with a linearly varying
temperature. By applying a successive Monte Carlo renormalization group procedure, both the static and
dynamic critical exponents are obtained for randomness amplitudes �the strong to weak coupling ratio� of r0

=3, 10, 15, and 20. The correlation length exponent � increases with disorder from less than to larger than
unity and this variation is justified by the good collapse of the specific heat near the critical region. The specific
heat exponent is obtained by the usual hyperscaling relation �=2−d� and thus indicates no possibility of the
activated dynamic scaling. Both r0 and q have effects on the critical dynamics of the disordered systems, which
can be seen from variations of the rate exponent, the hysteresis exponent, and the dynamic critical exponent.
Implications of these results are discussed.
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I. INTRODUCTION

Impurities can have drastic effects on first-order phase
transitions. In the late 1970s it was suggested that the addi-
tion of quenched impurities to a system undergoing a first-
order phase transition would soften the transition to be con-
tinuous �1�, which was then rigorously proved �2,3�. For
two-dimensional �2D� disordered systems, arbitrarily small
amount of disorder can soften the first-order transition to be
continuous �3�. While for the system in three dimensions,
there is a tricritical point �4–11� separating first-order and
randomness-induced second-order phase transitions. How-
ever, the rounding of the first-order phase transition is not so
well studied as that of the second-order one, which can be
understood well by the Harris criterion �12�. The identifica-
tion of universality classes in disordered systems whose pure
versions have first-order phase transitions has thus been a
focus and the determination of both the static and dynamic
critical exponents is an important way to understand it.

The Potts model �13� in two or three dimensions is very
appropriate for such study, for it exhibits a temperature-
driven first-order phase transition when the state number q
�4 in two dimensions or q�2 in three dimensions �14�. Up
to now, there has been a lot of work on the random-bond
Potts model, especially in two dimensions �4,15–25�. As the
first large scale Monte Carlo simulation on the two-
dimensional random-bond Potts model, the randomness-
induced second-order phase transition was confirmed �15�.
The critical exponents obtained by a finite-size scaling analy-
sis �15� were in agreement with those of the two-dimensional
Ising model and there were agreements on this scenario
�16,17�. Also there were arguments that the induced second-
order phase transition was controlled by a random fixed point
�18,19� and the critical exponents were different from those
of the two-dimensional Ising model �4�. In Ref. �4�, a trans-
fer matrix method was used and the results indicated a q

dependence of � /� and a weakly varying � around unity.
Monte Carlo simulations produced similar conclusions about
the variations of � /� and � �20–25�. In numerical simula-
tions the obtained exponents were to some extent dependent
on the disorder strength �see, e.g., Ref. �25��, a dependence
which was attributed to the crossover effects due to the pure
and/or percolation fixed points and it was suggested that a
disorder strength of r0=8–20 was preferred to detect the
random fixed point �23,26–29�. Here we will study the pos-
sible influence of the disorder strength on the critical expo-
nents of the two-dimensional random-bond Potts model us-
ing a nonequilibrium method that can avoid critical slowing
down.

In contrast to the statics, studies on the critical dynamics
of the two-dimensional random-bond-induced second-order
phase transition are fewer and the methods are restricted to
finite-size scaling �30,31� and short-time dynamics
�25,32,33�. In addition to a finite size scaling analysis with
the Swendsen-Wang cluster algorithm �34� which showed
that the dynamic critical exponent z of the two-dimensional
random-bond eight-state Potts model was approximately
equal to zero �30� in agreement with that of the two-
dimensional Ising model �35�, z was estimated with the
short-time dynamic approach using the single spin-flip algo-
rithm �25,33� to be greater than 2.17 �36� and to increase
with the randomness amplitude �25�. The dynamic finite-size
scaling analysis of the relaxation times of the two-
dimensional random-bond Potts model with OY self-dual
distribution suggested by Olson and Young �20� gave z
=3.76�4� for q=24 �31�, which is compatible with z
=3.41�6� for q=8 obtained by the short-time dynamic ap-
proach �32�. As only two kinds of method have been used to
study the critical dynamics and there is no systematic study
on the q dependence of z, we will use the Monte Carlo renor-
malization group �MCRG� method to study the critical dy-
namics of the two-dimensional random-bond Potts model. In
view of the successful extension of the weak universality
hypothesis �37� to the critical dynamics in pure systems
�36,38�, we will study in this work the dynamic universality*Corresponding author; stszf@mail.sysu.edu.cn
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class in disordered systems under a wider range of random-
ness amplitude for different Potts state number q.

In conventional critical dynamics, the relaxation time �
diverges with the system size L as ��Lz. For disorder-driven
continuous transitions, there is a possible activated dynamics
�39� proposed originally for the random-field Ising model
whose transition is suggested to be controlled by the zero
temperature fixed point. For a system exhibiting the activated
dynamics, it is the logarithm of the relaxation time that di-
verges with the power law of the system size. An additional
exponent � is introduced and the modified hyperscaling rela-
tion is �d−���=2−�. For the q-state Potts model with
quenched random impurities, an asymptotically exact map-
ping to the random-field Ising model was proposed for large
q and possible activated dynamics was anticipated �4,26�.
This possibility was checked by the scaling of the equilib-
rium relaxation times of the two-dimensional random-bond
Potts model and the conventional dynamic scaling was found
instead, albeit with some subtleties �31�. In this paper we
shall present the dynamic scaling form of the specific heat as
a test of the possible modified hyperscaling relation.

The method of this work is the dynamic MCRG in the
presence of a linearly varying temperature. The renormaliza-
tion group theory �40� and its combination with Monte Carlo
simulations �41,42� are very powerful in studying critical
phenomena. By matching correlation functions at different
blocking levels at different times, the dynamic exponent z
was obtained with the dynamic successive MCRG method
�43,44�. The extended dynamic MCRG method used here
and its field theoretical version have been proved to be very
powerful in detecting both continuous and first-order phase
transitions �38,45–47�. A linearly varying magnetic field was
used to study the scaling of hysteresis of the disordered Ising
model �48�. The linearly varying temperature acts as a driv-
ing force so that the critical slowing down induced by the
randomness in such nonequilibrium situations can be greatly
reduced, though the usual Metropolis algorithm is used.

The layout of the rest of the paper is as follows. The
model and the method will be given in Sec. II. The disorder
strength used ranges from r0=3 to r0=20. Section III pre-
sents the main results of this work. First presented are the
estimations of the rate exponent r �45�, the correlation length
exponent �, the hysteresis exponent 1 /r�, and the dynamic
critical exponent z. The effects of both q and r0 on these
exponents are revealed. Then we determine the order param-
eter exponent � by the dynamic scaling form. Furthermore,
good collapse of the rescaled specific heat near the critical
region seems to indicate that the conventional critical dy-
namics still hold and no � is necessary in the present cases.
Finally we discuss the effects of the dynamic MCRG ap-
proach on the estimates of the critical exponents and the
implication of our results. A summary is given in Sec. IV.

II. MODEL AND METHOD

The Hamiltonian of the random-bond Potts model is H
=−��i,j�Kij�	i	j

, where � is the Kronecker � function and
�i , j� denotes the sum over nearest-neighbor spin pairs. The
spin variable 	i of this model can take q different values and

the interaction strength Kij can take two different values, K1
and K2, with probability p and 1− p. r0=K1 /K2 indicates the
randomness amplitude of the system. We consider here the
self-dual system, i.e., p=0.5, the exact transition coupling of

which is determined by �eK1
c
−1��eK2

c
−1�=q �49�.

The order parameter, the specific heat per site, and the
nearest-neighbor correlation function are defined as

�M� = �qNmax/N − 1�/�q − 1� , �1�

C =
Ld

T2 ��E2� − �E�2� , �2�

Gnn =	 1

dN
�
�i,j�

�	i	j
 − �M�2. �3�

Here Nmax=max�N1 ,N2 , . . . ,Nq�, Nq denotes the number of
spins in state q, N the total number of spins, and E the energy
per site.

We use dynamic MCRG to study the Potts model in the
presence of a varying temperature T=Rt, where t is the time
measured by Monte Carlo steps and R is the sweep rate of
the temperature. Relations between the renormalized and un-
renormalized quantities are

�T − Tc��1� = �T − Tc�b1/� �4�

and

R�1� = Rbr, �5�

where b is the scaling factor and the superscript 1 indicates
the first iteration of the renormalization procedure.

The exponents r and � are obtained by matching the cor-
relation functions of two blocked spin systems with the same
size �the large lattice is renormalized one more time than the
small one� in order to reduce the size effect. One can then
obtain

r = ln�Rs
�m�/R�m��/ln b �6�

and

� = ln b/ln��Tps
�m� − Tc�/�Tp

�m� − Tc�� , �7�

where the subscript s indicates the small lattice.
For a second-order phase transition, the time scale of a

finite system in the critical region is proportional to Lz. So
we have �t− tc��1�= �t− tc�b−z, where tc is the time at which
T=Tc. Combining this equation with Eqs. �4� and �5�, and
T=Rt, we obtain the scaling relation

1/� = r − z , �8�

the validity of which has been confirmed �38,46,47�.

III. NUMERICAL RESULTS

In this paper the dynamic MCRG procedure is carried on
the two-dimensional random-bond Potts models for q=8 and
q=5 and the lattice sizes are 512
512 and 256
256. The
randomness amplitudes are r0=3, 10, 15, and 20. The sweep
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rate of the large lattice ranges from 1
10−5 to 1
10−4 and
that of the small lattice ranges from 1
10−5 to 2
10−1. The
number of samples for average varies from 200 to 10 000. In
each run �sample�, including every MCRG procedure, the
numbers of K1 and K2, which are distributed randomly on the
lattice, are kept equal so that the random fluctuations are
suppressed.

A. Exponents estimates by the dynamic MCRG

Estimates of r, �, 1 /r�, and z with the successive dynamic
MCRG are listed in Table I for the two-dimensional eight-
state Potts model, where results up to m=4 are presented.
For each r0, the temperature sweep rates in the second col-
umn are for the large lattice and the estimates of r, �, 1 /r�,
and z maintain almost constant after the first iteration as
irrelevant variables are iterated away. But the sweep rate R is
a relevant variable �see Table I�, further iterations lead to the
scattering of estimates of those exponents again �not shown
in Table I�. The smaller sweep rates lead the system to be
more equilibriumlike and closer to the fixed point and more
accurate estimations are expected if considerable samples are
used �38�. We get averages over m=2 to m=4 as shown in
Table III, where in the parentheses are given standard devia-
tions from the averages only: Errors arising from the numeri-
cal renormalization procedures have not been taken into ac-
count. The rate exponent r increases with r0, which means a
wider sweep rate range is needed for the small lattice. The
increasing of z with r0 indicates stronger critical slowing
down and the decreasing of 1 /r� indicates more severe hys-

teresis. It should be noted that the correlation length expo-
nent estimated here is around unity for r0=10, very close to
that of the 2D pure Ising model. With even larger random-
ness amplitude, however, our estimations of the exponent �
go beyond unity. The inequality of ��2 /d for the
randomness-induced phase transitions �50� is thus satisfied
when the randomness amplitude r0�10. We shall come back
to these results in the discussion section below.

To see the q dependence of these exponents, we carry all
these calculations on the two-dimensional five-state Potts
model, the pure version of which exhibits a weak first-order
transition. The lattice sizes and the range of the sweep rates
are the same as those of the q=8 Potts model. Results are
listed in Table II and the corresponding averages are shown
in Table III. For clarity, we plot variations of r, �, 1 /r�, and
z with r0 for both q=8 and q=5 in Figs. 1�a�–1�d�, which
show clearly that the varying trends of the estimations with
the randomness amplitude for q=5 are similar to those for
q=8. When r0�10, the q dependence of � is very weak, the
hysteresis exponent 1 /r� decreases with q, both the dynamic
exponent z and the rate exponent r increase with q, which
indicate that q is relevant to the critical dynamics.

B. Dynamic scaling forms of the order parameter

The dynamic scaling form of the order parameter is �51�

M�T − Tc,R� = R�/r�f1„�T − Tc�R−1/r�
… , �9�

which has been testified for the pure systems. Here we will
try to show its validity when quenched randomness is incor-

TABLE I. The exponents for the two-dimensional eight-state random-bond Potts model with several randomness amplitudes.

r0 R

m=1 m=2 m=3 m=4

r � 1 /r� z r � 1 /r� z r � 1 /r� z r � 1 /r� z

3 1
10−5 5.188 0.655 0.295 3.660 4.662 0.759 0.283 3.344 4.452 0.787 0.286 3.181 4.380 0.816 0.280 3.154

3
10−5 4.986 0.649 0.309 3.446 4.549 0.721 0.305 3.162 4.410 0.778 0.291 3.125 4.373 0.840 0.272 3.182

5
10−5 4.857 0.646 0.319 3.310 4.451 0.717 0.313 3.057 4.335 0.743 0.310 2.990 4.280 0.780 0.299 2.998

7
10−5 4.834 0.649 0.319 3.294 4.443 0.709 0.318 3.032 4.322 0.733 0.316 2.958 4.146 0.803 0.300 2.900

1
10−4 4.787 0.645 0.324 3.237 4.446 0.698 0.323 3.012 4.350 0.714 0.322 2.949 4.324 0.753 3.3.7 2.996

10 1
10−5 6.018 0.950 0.175 4.964 5.661 0.983 0.180 4.644 5.571 1.062 0.169 4.630 5.512 1.074 0.169 4.581

3
10−5 5.772 0.972 0.178 4.743 5.526 1.045 0.173 4.569 5.489 1.050 0.174 4.537 5.521 1.017 0.178 4.537

5
10−5 5.655 0.946 0.187 4.598 5.423 0.982 0.188 4.405 5.424 0.989 0.186 4.413 5.385 1.036 0.179 4.420

7
10−5 5.588 0.945 0.189 4.530 5.374 1.004 0.186 4.377 5.382 0.971 0.191 4.353 5.311 1.041 0.181 4.350

1
10−4 5.502 0.954 0.191 4.454 5.319 0.990 0.190 4.309 5.364 1.001 0.186 4.365 5.140 1.068 0.182 4.204

15 1
10−5 6.329 1.049 0.151 5.375 6.043 1.131 0.146 5.159 5.969 1.076 0.156 5.040 5.975 1.123 0.149 5.084

3
10−5 6.070 1.054 0.156 5.122 5.835 1.084 0.158 4.913 5.825 1.083 0.159 4.901 5.777 1.128 0.153 4.891

5
10−5 5.930 1.063 0.159 4.988 5.726 1.083 0.161 4.803 5.738 1.109 0.157 4.837 5.654 1.133 0.156 4.772

7
10−5 5.854 1.033 0.165 4.886 5.660 1.086 0.163 4.739 5.689 1.068 0.165 4.753 5.611 1.145 0.156 4.738

1
10−4 5.764 1.041 0.167 4.803 5.598 1.090 0.164 4.681 5.643 1.074 0.165 4.712 5.577 1.062 0.169 4.636

20 1
10−5 6.507 1.118 0.138 5.613 6.203 1.203 0.134 5.372 6.160 1.156 0.141 5.294 6.030 1.168 0.142 5.174

3
10−5 6.251 1.129 0.142 5.365 6.007 1.176 0.142 5.156 5.813 1.189 0.145 4.972 5.932 1.224 0.138 5.115

5
10−5 6.106 1.115 0.147 5.209 5.918 1.155 0.146 5.053 5.919 1.199 0.141 5.086 5.666 1.257 0.140 4.871

7
10−5 6.033 1.129 0.147 5.147 5.849 1.151 0.149 4.980 5.872 1.140 0.149 4.995 5.667 1.202 0.147 4.835

1
10−4 5.925 1.107 0.153 5.022 5.771 1.128 0.154 4.885 5.781 1.150 0.150 4.911 5.647 1.206 0.147 4.818
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porated and determine the static exponent � from the best
data collapse of the order parameter with Eq. �9�. The details
of this method have been discussed in our previous work
�38,46� and we only present the results here. From the best
collapse in Figs. 2 and 3, where the estimations of 1 /r� in
Table III are used, estimations of � and hence � /� are de-
termined as shown in Table III. The errors of � are roughly
determined by the ranges of conjectured � which can give
similarly satisfactory data collapse of the order parameter by
direct inspection. These ranges and hence the errors of � thus
obtained are quite large compared with the errors of other
quantities as can be seen from Fig. 1. But we keep them as
we have not taken into account the errors of 1 /r� in the
estimations. The errors of � /� are determined by those of �
and � by the error propagation. The dependence of these two
exponents � and � /� on q is pronounced, as shown in Figs.

1�e� and 1�f�. Considering the errors of � and � /�, one sees
that, for each q, they appear to be nearly constant when r0
�10. With the two independent static exponents � and �
being determined, all the other static exponents can be cal-
culated.

C. Dynamic scaling forms of the specific heat

Applying the estimations of � in the preceding section to
the conventional hyperscaling relation, we get the specific
heat exponents which evolve from positive to zero and then
negative when increasing r0. In this section, we focus on the
q=8 Potts model as an example to discuss the specific heat
and its dynamic scaling form.

Applying the estimations of � in Table III to the hyper-
scaling relation �=2−d�, we get �=0.486�86�, −0.042�70�,

TABLE II. Critical exponents for the two-dimensional five-state random-bond Potts model with several randomness amplitudes.

r0 R

m=1 m=2 m=3 m=4

r � 1 /r� z r � 1 /r� z r � 1 /r� z r � 1 /r� z

3 1
10−5 4.797 0.713 0.292 3.395 4.310 0.801 0.290 3.062 4.176 0.826 0.290 2.965 4.117 0.931 0.261 3.044

3
10−5 4.637 0.716 0.301 3.240 4.234 0.787 0.300 2.962 4.106 0.830 0.294 2.901 4.049 0.888 0.278 2.922

5
10−5 4.586 0.730 0.299 3.216 4.228 0.808 0.293 2.989 4.146 0.799 0.302 2.895 4.141 0.834 0.290 2.942

7
10−5 4.549 0.722 0.305 3.163 4.238 0.770 0.306 2.940 4.121 0.790 0.307 2.854 4.015 0.839 0.297 2.824

1
10−4 4.509 0.721 0.308 3.122 4.195 0.781 0.305 2.915 4.120 0.786 0.309 2.847 4.066 0.800 0.308 2.816

10 1
10−5 5.660 0.962 0.184 4.621 5.269 1.040 0.183 4.307 5.196 1.029 0.187 4.224 5.192 1.064 0.181 4.252

3
10−5 5.511 0.982 0.185 4.493 5.182 1.030 0.187 4.211 5.154 1.032 0.188 4.185 5.118 1.002 0.195 4.120

5
10−5 5.414 0.946 0.195 4.357 5.116 1.010 0.194 4.126 5.106 1.015 0.193 4.120 5.146 1.007 0.193 4.153

7
10−5 5.352 0.961 0.194 4.311 5.093 1.012 0.194 4.104 5.080 1.008 0.195 4.088 5.069 1.076 0.183 4.139

1
10−4 5.292 0.947 0.200 4.236 5.054 1.008 0.196 4.062 5.049 1.008 0.196 4.057 5.030 1.057 0.188 4.084

15 1
10−5 5.989 1.042 0.160 5.029 5.627 1.065 0.167 4.688 5.601 1.135 0.157 4.720 5.519 1.167 0.155 4.662

3
10−5 5.840 1.058 0.162 4.895 5.517 1.092 0.166 4.601 5.513 1.104 0.164 4.607 5.366 1.171 0.159 4.512

5
10−5 5.707 1.047 0.167 4.752 5.435 1.085 0.170 4.514 5.447 1.078 0.170 4.520 5.347 1.145 0.163 4.473

7
10−5 5.646 1.047 0.169 4.691 5.401 1.084 0.171 4.479 5.395 1.098 0.169 4.484 5.360 1.136 0.164 4.480

1
10−4 5.575 1.050 0.171 4.623 5.350 1.086 0.172 4.429 5.345 1.089 0.172 4.427 5.347 1.145 0.163 4.474

20 1
10−5 6.226 1.089 0.148 5.308 5.836 1.114 0.154 4.938 5.816 1.197 0.144 4.980 5.820 1.191 0.144 4.981

3
10−5 6.006 1.139 0.146 5.128 5.734 1.159 0.151 4.871 5.713 1.223 0.143 4.895 5.511 1.177 0.154 4.662

5
10−5 5.908 1.106 0.153 5.004 5.641 1.188 0.149 4.799 5.617 1.188 0.150 4.775 5.487 1.265 0.144 4.696

7
10−5 5.834 1.124 0.153 4.944 5.583 1.177 0.152 4.734 5.575 1.155 0.155 4.709 5.527 1.170 0.155 4.672

1
10−4 5.742 1.122 0.155 4.850 5.521 1.159 0.156 4.658 5.519 1.172 0.155 4.666 5.334 1.189 0.158 4.493

TABLE III. Averages of the exponents obtained by the dynamic renormalization group approach.

r0 q r � 1 /r� z � � /�

3 8 4.39�12� 0.757�43� 0.302�16� 3.07�12� 0.130�15� 0.172�10�
5 4.15�8� 0.818�43� 0.295�13� 2.93�7� 0.128�10� 0.157�4�

10 8 5.43�13� 1.021�35� 0.181�7� 4.45�13� 0.170�20� 0.167�14�
5 5.12�7� 1.027�23� 0.190�5� 4.15�7� 0.161�20� 0.157�16�

15 8 5.75�15� 1.098�27� 0.158�6� 4.84�15� 0.173�20� 0.158�14�
5 5.44�10� 1.112�34� 0.167�5� 4.54�9� 0.164�20� 0.148�14�

20 8 5.88�17� 1.180�35� 0.144�5� 5.03�17� 0.176�20� 0.149�13�
5 5.62�14� 1.182�34� 0.151�5� 4.77�14� 0.170�20� 0.144�13�
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−0.196�54�, and −0.360�70� for r0=3, 10, 15, and 20, respec-
tively. For the specific heat having power-law dependence
�with positive �� on the reduced temperature near the criti-
cality, the dynamic scaling form is �51�

C�T − Tc,R� = R−�/r�f2„�T − Tc�R−1/r�
… , �10�

which has been testified for the pure systems. For r0=3, we
get positive � by the hyperscaling relation and the corre-
sponding dynamic scaling form of the specific heat is shown
in Fig. 4�a�, which is quite good upon considering the varia-
tion of each curve, similarly to the pure case �38�. The nega-

tive specific heat exponent means, on the other hand, a finite
cusp appears at the critical point and the dynamic scaling
form is

C�T − Tc,R� = C0 + R−�/r�f3„�T − Tc�R−1/r�
… . �11�

By seeking the most desirable collapsing as shown in Figs.
4�b�–4�d�, C0 can be determined, which are C0=16.5�5�,
3.9�3�, and 2.4�2�, respectively. The increased randomness
amplitude leads to stronger fluctuations, especially of the en-
ergy. For r0=20 the fluctuations of the energy is so severe
that more than 10 000 randomness realizations have been
used to obtain the specific heat curves and the range of the
sweep rate is from R=0.000 05 to R=0.001. The desirable
collapsing of the specific heat with different � obtained by
the conventional hyperscaling relation �=2−d� suggests the
conventional rather than activated dynamics at the criticality.

FIG. 1. �Color online� Variations of exponents with the randomness amplitude r0 for q=8 �square� and q=5 �star�.

FIG. 2. �Color online� The dynamic scaling forms of the order
parameter for the two-dimensional q=8 random-bond Potts model
with r0=3 �a�, 10 �b�, 15 �c�, and 20 �d�. Insets show the original
curves for the large lattice �dashed lines� and the small lattice �solid
lines�. Sweep rates from left to right are 0.000 01, 0.000 03,
0.000 05, 0.000 07, and 0.0001 for the large lattice and 0.000 01,
0.000 03, 0.000 05, 0.000 07, 0.0001, 0.0003, 0.0005, 0.0007, and
0.001 for the small lattice.

FIG. 3. �Color online� The same as Fig. 2 except that it is for the
two-dimensional q=5 random-bond Potts model.
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For r0=10, �=1.021�35�, which is around unity. If the
specific heat were logarithmically divergent, i.e., C� ln L,
the corresponding dynamic scaling form should be

C�T − Tc,R� = −
1

r
f4„�T − Tc�R−1/r�

…ln R . �12�

However, the specific heat curves do not collapse at all ac-
cording to this equation, illustrated by Fig. 5�a�. If a constant
term C0�2.3 is added to the right-hand side of Eq. �12�, the
collapsing appears just around the peaks of the specific heat,
as shown in Fig. 5�b�.

IV. DISCUSSIONS

Table IV shows part of our results and those of Ref. �25�
measured by the short-time dynamic approach for compari-
son and the agreement is very good. For q=8 with r0=10,
the estimate of � around unity is consistent with those of
Refs. �20,21�. The result of � /�=0.160�4� for a large disor-
der strength �20� agrees quite well with � /�=0.158�14� for
q=8 with r0=15 in Table III. While our estimate of � /�
=0.167�14� for q=8 with r0=10 is a little larger than � /�

=0.153�3� in Ref. �21� but agrees within errors. For q=5
with r0=10, the correlation length exponent � was reported
to be around unity �22�, which is consistent with our result.
Our estimate of � /�=0.157�16� is larger than � /�
=0.146�1� in Ref. �22� but again agrees within errors. In
addition, the conclusions of the weak q dependence of � and
pronounced q dependence of � /� when r0�10, as shown in
Figs. 1�b� and 1�f�, agree well with the conclusions of Ref.
�4�. These, therefore, show favorably the reliability of the
exponents obtained.

Both the static and dynamic critical exponents in this pa-
per depend on the disorder strength. Such dependence in
dilute Ising systems was explained within the framework of
the renormalization group to be caused by the limited system
sizes which made the asymptotic scaling region unavailable
�28,29�. Corrections to scaling were then taken into account
in the three-dimensional diluted Ising model and impurity
concentration independent critical exponents were obtained
�52�. In this work the temperature sweep rate of the large
lattice varies from R=1
10−5 to R=1
10−4 and our aver-
ages are over this range. On account of the small rates used
and the good collapse of both the order parameter and the
specific heat near the critical region, corrections to scaling

FIG. 4. �Color online� Dynamic scaling forms of the specific heat for r0=3 �a�, 10 �b�, 15 �c�, and 20 �d�. Insets show the original curves.
The sweep rates from left to right in �a�–�c� are 0.000 01, 0.000 03, 0.000 05, 0.000 07, 0.0001, 0.0003, 0.0005, 0.0007, and 0.001,
respectively. While the sweep rates in �d� are from 0.000 05 to 0.001. Except for the first one, curves in each inset have been shifted along
the horizontal coordinate for clarity.

TABLE IV. The exponents calculated by the dynamic MCRG �present work� and the short-time dynamic approach �Ref. �25�� for the
d=2, q=8 random-bond Potts model with randomness amplitude of r0=3 and 10.

r0 �d−2� /�� /z � /�z 1 /�z d /z z � /� 1 /�

Present work 3 0.539�28� 0.0560�10� 0.430�41� 0.652�26� 3.07�12� 0.172�10� 1.32�8�
Ref. �25� 0.552�2� 0.0560�4� 0.438�9� 0.669�8� 2.99�4� /3.01�2� 0.169�9� /0.169�2� 1.32�3�
Present work 10 0.374�17� 0.0375�20� 0.220�14� 0.449�13� 4.45�13� 0.167�14� 0.98�3�
Ref. �25� 0.369�1� 0.0343�2� 0.226�5� 0.428�6� 4.67�7� /4.57�2� 0.156�11� /0.157�2� 1.03�3�

SHUANGLI FAN AND FAN ZHONG PHYSICAL REVIEW E 79, 011122 �2009�

011122-6



�53� should be small and the asymptotic scaling region may
possibly be available. On the other hand, the larger r0 and
smaller R both lead to even stronger critical fluctuations and
more independent samples are needed for averages, as we
have done.

In Ref. �27� the crossover of the system from the pure
and/or percolation fixed point to the random one was ob-
served by increasing the lattice size. To test the possible size
effects, we carry the dynamic renormalization group proce-
dure again on the eight-state random-bond Potts model with
r0=3 and r0=20, but the lattice pairs are now 128
128 and
64
64. More independent samples are used and estimations
of the critical exponents are shown in Table V.

When r0=3, the averages over m=2 to m=4 agree well
with those in Table III both sets are listed in Table VI and
thus the finite-size effects can be neglected. Fluctuations are
very large when r0=20. When m=4, the linear dimension of
the large lattice is 8
8 and there are considerable statistical
fluctuations. Consequently, we get averages only over m=2
and m=3 and compare them with the averages in Table III,
as shown in Table VI. The estimations of each exponent
agree with each other within statistical errors and so finite-
size effects are slight if exists. In particular, there is no sys-
tematic finite-size effects even considering the slight differ-
ences in the numbers themselves: Though � �for r0=3� and r
�for r0=20� decrease a little, z �for r0=3� and � �for r0=20�
show an opposite trend �see Table VI�. In fact, we match the
correlation functions between systems with the same size
and the finite-size effects should be small for our renormal-
ization group method.

Having shown that the obtained exponents appear reli-
able, we now discuss their implication. The exponent � goes
beyond unity when r0�10. We have shown that �=2−d�
holds in Sec. III C and thus � is positive when r0�10 and
negative when r0�10. According to the Harris criterion �12�,
this may therefore indicate that the disorder is relevant for
r0�10 and irrelevant for r0�10. The distinct scaling forms
of the specific heat displayed in Sec. III C also show clearly
that there appear to be two distinct regimes that seem to
agree with the scenario proposed in Ref. �4� of two fixed

points, a pure one and a random one. However, the disorder
of amplitude less than 10 is relevant. The agreement of all
the exponents in this regime obtained by various methods
seems they may not be just effective exponents that are af-
fected by crossover between the pure and disordered one, but
may also possibly indicate that each r0 has its own fixed
point. For the large disorder regime, disorder is irrelevant
and there should be a random fixed point controlling the
critical behavior. The critical exponents, in particular, should
be independent of the disorder amplitude and identical in this
regime. Though the exponents we obtained depends on r0,
they may still be regarded as nearly constant if the statistical
errors are taken into account and thus may support a single
random fixed point. The small variations in the exponents,
having shown above not to be due to the finite-size effects as
they are not systematically reduced, may be a result of the
influence of the percolation fixed point. Further studies are
still needed.

V. SUMMARY

We have studied the two-dimensional random-bond Potts
model for both q=8 and q=5 with the dynamic MCRG ap-
proach. Effects of both the randomness amplitude r0 and the
states number q of the Potts model on the critical properties
are investigated. The dynamic exponent z increases with q,
which means slower and slower critical dynamics. The de-
creasing of 1 /r� with q means even more severe hysteresis

FIG. 5. �Color online� Rescaling of the specific heat for r0=10
according to the logarithmically divergent dynamic scaling form.

TABLE V. Critical exponents for the two-dimensional eight-state random-bond Potts model with randomness amplitudes of r0=3 and
r0=20. The lattice sizes are 128
128 and 64
64.

r0 R

m=1 m=2 m=3 m=4

r � 1 /r� z r � 1 /r� z r � 1 /r� z r � 1 /r� z

3 1
10−5 5.183 0.663 0.291 3.675 4.615 0.730 0.297 3.245 4.430 0.804 0.281 3.186 4.307 0.859 0.270 3.143

3
10−5 4.982 0.649 0.309 3.441 4.552 0.706 0.311 3.135 4.423 0.758 0.298 3.104 4.277 0.825 0.284 3.064

5
10−5 4.885 0.657 0.312 3.362 4.423 0.720 0.314 3.033 4.309 0.764 0.304 3.000 4.175 0.899 0.266 3.063

7
10−5 4.845 0.640 0.322 3.283 4.419 0.691 0.328 2.971 4.294 0.715 0.326 2.895 4.677 0.706 0.303 3.260

1
10−4 4.782 0.647 0.323 3.236 4.440 0.690 0.327 2.989 4.294 0.743 0.314 2.947 4.245 0.758 0.311 2.925

20 1
10−5 6.453 1.133 0.137 5.570 6.095 1.173 0.140 5.242 6.028 1.192 0.139 5.190 5.686 1.398 0.126 4.971

3
10−5 6.203 1.087 0.148 5.283 5.976 1.132 0.148 5.093 6.001 1.153 0.145 5.133 5.849 1.316 0.130 5.089

5
10−5 6.065 1.115 0.148 5.168 5.882 1.165 0.146 5.024 5.840 1.184 0.145 4.995 5.334 1.368 0.137 4.603

7
10−5 5.998 1.105 0.151 5.094 5.813 1.129 0.152 4.927 5.841 1.105 0.155 4.937 5.557 1.332 0.135 4.806

1
10−4 5.907 1.098 0.154 4.997 5.754 1.157 0.150 4.890 5.772 1.168 0.148 4.916 5.503 1.210 0.150 4.676
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due to the introduced temperature sweep rate. Thus, the weak
universality class cannot be extended to the dynamics in such
random-bond systems. Applying the estimated correlation
length exponent � to the hyperscaling relation �=2−d�, we
get specific heat exponent � varying with the randomness
amplitude from positive to negative accordingly. This trend
is verified by the dynamic scaling forms of the specific heat
and the conventional dynamic scaling still holds in such ran-
dom systems. Also, the logarithmic divergence of the specific
heat with the disorder strength of r0=10 is excluded in our
work. The systematic dependence on the randomness of �
and � and the distinct behavior of the specific curves shown
in Fig. 4 clearly indicate that there are two distinct regimes

corresponding to low �r010� and high �r0�10� random-
ness amplitudes, possibly in accordance to the two possible
fixed points found in Ref. �4�. However, r0 is clearly relevant
when r010 and each may give its own corresponding set of
critical exponents, though crossover between the pure and
random fixed point is also possible. When r0�10, r0 is irrel-
evant and percolation fixed point possibly results in the
impurity-dependent critical exponents.
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